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Development and large volume 
production of extremely high 
current density YBa2Cu3O7 
superconducting wires for fusion
A. Molodyk1,2*, S. Samoilenkov1,2, A. Markelov1, P. Degtyarenko2,3, S. Lee4, V. Petrykin4, 
M. Gaifullin4, A. Mankevich1, A. Vavilov1,2,4, B. Sorbom5, J. Cheng5, S. Garberg5, L. Kesler5, 
Z. Hartwig6, S. Gavrilkin7, A. Tsvetkov7, T. Okada8, S. Awaji8, D. Abraimov9, A. Francis9, 
G. Bradford9, D. Larbalestier9, C. Senatore10, M. Bonura10, A. E. Pantoja11, S. C. Wimbush11, 
N. M. Strickland11 & A. Vasiliev12,13,14

The fusion power density produced in a tokamak is proportional to its magnetic field strength to the 
fourth power. Second-generation high temperature superconductor (2G HTS) wires demonstrate 
remarkable engineering current density (averaged over the full wire), JE, at very high magnetic fields, 
driving progress in fusion and other applications. The key challenge for HTS wires has been to offer an 
acceptable combination of high and consistent superconducting performance in high magnetic fields, 
high volume supply, and low price. Here we report a very high and reproducible JE in practical HTS 
wires based on a simple YBa2Cu3O7 (YBCO) superconductor formulation with Y2O3 nanoparticles, which 
have been delivered in just nine months to a commercial fusion customer in the largest-volume order 
the HTS industry has seen to date. We demonstrate a novel YBCO superconductor formulation without 
the c-axis correlated nano-columnar defects that are widely believed to be prerequisite for high 
in-field performance. The simplicity of this new formulation allows robust and scalable manufacturing, 
providing, for the first time, large volumes of consistently high performance wire, and the economies 
of scale necessary to lower HTS wire prices to a level acceptable for fusion and ultimately for the 
widespread commercial adoption of HTS.

The discovery of high temperature superconductivity (HTS) in 19861 generated great hope for widespread super-
conducting devices. Today we can see that it took more time and effort to develop HTS technology than many 
had anticipated. But that development brought about practical 2G HTS wires that now can revolutionise some 
of the most basic branches of the world’s economy. Among their many important uses, HTS wires enable very 
high magnetic fields with a relatively low power input. The 26.4 T all-HTS magnet2 and the 45.5 T hybrid HTS 
magnet3 are recent landmark achievements in this field. Perhaps the most significant impact HTS materials 
can make is in magnetic confinement fusion devices4,5. Fusion has the potential to rewrite the electric power 
landscape of mankind, solving rapidly accelerating climate issues and bringing affordable, non-polluting power 
to billions of people.

The progress of HTS technology has been especially impressive in the last decade, culminating recently in JE 
values in excess of 1000 A/mm2 at 4.2 K in 18–20 T magnetic field6,7. While this is ample for some applications8, 
higher JE opens new frontiers in magnets for fusion reactors9,10, particle accelerators11–13, magnetic resonance 
imaging14, nuclear magnetic resonance spectroscopy15,16 and space detectors17. For instance, a minimum 
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engineering current density of 700 A/mm2 at 20 K, 20 T is essential for the magnet system of the prototype 
commercial fusion device SPARC​18, which is being designed and constructed by a collaboration of MIT and Com-
monwealth Fusion Systems (CFS). This target was a significant challenge when first announced, because even the 
best laboratory samples could barely reach that performance. Moreover, all the above applications require large 
wire volumes, the SPARC device for example needing approximately 10,000 km of 4 mm wide wire. For most 
commercial applications of HTS, the wire cost is still too high for commercial viability and only robust, high-
volume manufacturing can lower the price to a level amenable to the widespread commercial adoption of HTS19.

In this article we demonstrate very high engineering current density in practical 2G HTS wires based on a 
simple YBCO superconductor formulation with Y2O3 nanoparticles. We present a large and consistent dataset 
of critical current measurements independently performed in leading laboratories worldwide on wires delivered 
in large industrial volumes for a commercial fusion power customer.

Concept
Our concept for developing HTS wire with high in-field performance suitable for large volume, low cost manu-
facturing was the following:

(1)	 Select yttrium as the rare earth element in place of gadolinium or europium as commonly used in the 2G 
HTS wire industry. We choose yttrium because of its small ionic radius, which results in higher charge 
carrier (hole) density in the superconducting CuO2 planes and also because it confers a lower electronic 
anisotropy and higher irreversibility field20.

(2)	 Employ uniformly distributed Y2O3 nanoparticles, native to YBCO, as vortex pinning centres, thus keeping 
the composition and microstructure simple to facilitate reproducible fabrication. This contrasts with the 
common approach of introducing extrinsic nano-columns aligned about the REBCO c-axis as pinning 
centres21–25, a proven challenge to industrial implementation25–28.

(3)	 Take advantage of the very low neutron cross-section of Y of 1.28 b compared to those of Gd (49,000 b) 
and Eu (4570 b), which is particularly important for application in a fusion reactor.

(4)	 Use thin substrate and deposit thick YBCO films, to further increase engineering current density.

Experimental results
In 9 months, we manufactured over 300 km of 4 mm wide YBCO wire, delivering most of it to CFS. This has 
been the largest completed order in the history of the 2G HTS wire industry. We fabricated the wire on a strong 
Hastelloy C276 substrate with a buffer layer architecture based on MgO textured using ion beam assisted depo-
sition and with the HTS layer grown by pulsed laser deposition (PLD), as explained in the Methods section. 
The YBCO layer contains uniformly distributed Y2O3 nanoparticles with (001) and (110) axial orientation, with 
the average density of 4000 ± 2000 μm-2. Microstructural analysis is presented in Supplementary Information.

Superconducting properties in high magnetic field.  In Fig. 1a we present the superconducting per-
formance at low temperature and high magnetic field oriented perpendicular to the wire surface (B//c) of three 
representative YBCO wires measured at high field facilities in Switzerland, Japan and the USA. The samples dif-
fered in substrate thickness: 40, 60 and 100 µm and YBCO layer thickness: 2.55, 2.82 and 3.28 µm, respectively. 
In all three samples very high values of critical current were achieved, among the best reported to date for com-
mercial 2G HTS wire7,26,30–34. In particular, an Ic at 20 K, 20 T in the 220–270 A/4 mm range and an Ic at 4.2 K, 
20 T in the 450–570 A/4 mm range were measured. Record JE values for commercial wires of over 1000 A/mm2 
at 20 K, 20 T and over 2000 A/mm2 at 4.2 K, 20 T were established for 40 μm substrate with 5 μm per side of 
stabilising copper. Despite a certain variation in the Ic values in the three samples, there is a low statistical scatter 
in the ratio of the Ic at 4.2 and 20 K to that at 77 K in self-field (the so-called lift-factor explained in the Methods 
section), for these samples (Fig. 1a, inset), as well as for the entire production as we show below. This verifies the 
applicability of the lift-factor approach in the case of this simplified YBCO wire, in contrast to previous reports 
for other, more complex 2G HTS wire formulations26,27.

In Fig. 1b we compare the relative performance of our YBCO and GdBCO35,36 wires prepared on the same 
production line, over a wide range of temperatures and magnetic fields, using a representative Ic at 77 K in self-
field of 180 A/4 mm for wires of both types. In the entire range of magnetic fields studied, at temperatures of 
65 K and below, YBCO wire outperforms GdBCO wire by a factor of 1.5 to over 2.5. Only at 77 K is GdBCO 
preferable for application.

Due to the structural anisotropy of YBCO, Ic depends on the magnetic field direction (Fig. 2). The maximum 
of Ic occurs with field applied parallel to the wire surface (90°, B//ab). Importantly, there is no Ic peak at the 0° 
(B//c) orientation, as is typical for REBCO films with c-axis correlated artificial pinning centres21–25. In a wide 
angular region about the B//c orientation, the Ic dependence is flat, with the Ic variation below 3%. Therefore, 
for YBCO wire the minimum Ic for all field orientations, an important parameter for practical use, is at B//c.

Statistical verification of results.  HTS applications require reproducible production at high volume and 
low cost. Our success is supported by a large and self-consistent data set on samples taken from the front and 
back ends of the 300–600 m lengths which make up the 300 km of wire underpinning this paper. The samples 
were evaluated by multiple labs and the finding of identical performance of wire sourced from our two identical 
production lines in Russia and in Japan. Figure 3 shows the statistical scatter of lift-factors at 20 K determined 
from measurements with 6 different systems. The data show no pronounced dependence of Ic lift-factor (the 
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ratio of the Ic at 20 K, high field to Ic at 77 K, self-field), even though Ic values ranged quite widely as we developed 
our ability to make thicker HTS layers37.

Figure 4a presents the correlation between Ic (77 K, self-field) and Ic (20 K, 20 T). The 200 points cluster tightly 
along an average “lift-factor” line with an approximately 15% standard deviation. For wires made on a 40 μm 

Figure 1.   (a) Critical current, Ic, in magnetic field (B//c) at 4.2 and 20 K of three YBCO wire samples measured 
at University of Geneva (red curves), Tohoku University (black curves) and the NHMFL at Florida State 
University (blue curves). The 1000 and 2000 A/mm2 marks for engineering current density, JE, are provided 
for wire on 40 μm substrate with 5 μm per side stabilising copper layer. In the inset: lift-factors based on 77 K, 
self-field Ic values. Very high values of Ic and JE have been achieved. Although the Ic values in the three samples 
are noticeably different, the lift-factor values are very close, manifesting good process reproducibility and 
predictability of superconducting performance. (b) Ratios of Ic values of YBCO and GdBCO wires at 4.2, 20, 65, 
and 77 K in magnetic field. Wherever the ratio is greater than unity, the superconducting performance of YBCO 
is superior to that of GdBCO and vice versa. Dashed lines on the plot are provided for guidance only.

Figure 2.   Angular dependences of Ic in magnetic field of YBCO wire at 77 K, 1 T; 65 K, 3 T and 20 K, 5, 12, 18, 
and 20 T. Measurements were performed at Tohoku University. 0° corresponds to the B//c orientation and 90° 
corresponds to the B//ab orientation. Within the accuracy of measurement, the minimum value of Ic for all field 
orientations is at B//c. At 20 K, Ic at B//ab stays almost constant with increasing magnetic field. We believe the 
smaller value of Ic at B//ab at 20 T may be an artefact due to the sharp Ic angular peak and the discrete angle step 
during measurements.
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thick substrate with 5 μm per side stabilising copper layer, JE is in the 500–1400 A/mm2 range, 87% of the wires 
having a JE above 700 A/mm2 and 72% having a JE of 700–1000 A/mm2.

Figure 4b compares lift factors at 20 K for both our Russian and Japanese production lines. The differences 
are very small and well within the statistical variation. This verification is of high practical importance, though 
not surprising, because we use identical production equipment at each site. The good reproducibility is due to 
two main reasons: the simple microstructure of the YBCO layer containing no c-axis correlated nano-columns 
and the reproducible and well-controlled PLD technology used to grow the HTS layer.

Discussion
We have established a record engineering current density in commercial wire of over 1000 A/mm2 at 20 K, 20 T 
and over 2000 A/mm2 at 4.2 K, 20 T. These values surpass the ambitious JE targets of 700 A/mm2 at 20 K, 20 T 
for fusion magnets18 and of 1000 A/mm2 at 4.2 K, 20 T for accelerator magnets12. This is possible through the 
combination of a high in-field Ic and a thin substrate. Especially important is that we obtain these extraordinar-
ily high values not in select champion samples but in hundreds of kilometres of routinely manufactured wires. 

Figure 3.   Statistical scatter of lift-factors at (a) 20 K, 8 T (B//c) and (b) 20 K, 20 T (B//c) measured by different 
apparatus. Data points from different measurement apparatus constitute one set. There is no pronounced 
dependence of the lift-factor value on the Ic at 77 K in self-field. (We provide a table with lift-factor values at 4.2 
and 20 K in Supplementary Information).

Figure 4.   Statistical data for the new YBCO wire at 20 K in magnetic field (B//c). (a) Correlation between Ic 
at 77 K in self-field and Ic at 20 K, 20 T. Linear approximation starting at origin gives the slope (lift-factor) of 
1.13. Almost all data points lie within the + /− 30% corridor, which is approximately 4 σ. The right vertical axis 
represents engineering current density for wire on a 40 μm thick substrate with 5 μm per side stabilising copper 
layer, and a total wire thickness of 56 μm. (b) Comparison of lift-factors at 20 K for YBCO wires fabricated at 
two production sites in Russia and Japan. The lift-factor values almost coincide, well within the statistical spread.
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Indeed, this achievement has caused SPARC to raise their specification to 750 A/mm2 because of the benefits 
to the system design.

A common approach to enhance Jc in magnetic field has been to introduce artificial pinning centres (APC) 
of c-axis correlated nano-columns of various perovskites21–25, a technique utilised in commercial PLD28,29,38 and 
metalorganic chemical vapour deposition (MOCVD) film growth6. Although the highest Jc(B) values have been 
obtained in this way39–41, the complex HTS film nanostructure results in considerable spread in commercial wire 
in-field performance26,27 and greatly narrows the processing window, requiring slower deposition rates to achieve 
maximum Jc enhancement28,29. For 2G HTS wire with nano-columnar APC, more typical is a faster decay of 
critical current with increasing magnetic field than for wire without APC42. At a temperature of approximately 
30 K and below, most pinning occurs on abundant point defects; therefore, APC only indirectly influence the 
pinning properties by altering the point defect concentration and distribution.

The overall trend to improving HTS wire performance has long been to keep increasing the complexity 
of the material composition and microstructure by introducing such APC defects, a path which is in direct 
conflict with nurturing mature, cost-effective mass production technologies. We attribute the great stability of 
our commercial production to our choice of native Y2O3 nanoparticles as dominant pinning centres. They do 
not increase the chemical complexity of YBCO and they impart a simple, uniform nanostructure, amenable to 
reproducible fabrication.

Indeed, our present Jc(B) results are superior to many excellent results achieved with nano-columnar APC 
reported by other groups7,26,30–34. We conclude, therefore, that nano-columnar defects are not indispensable for 
high critical current in magnetic field. Indeed, rare earth oxides form randomly distributed nanoparticles semi-
coherent to the REBCO matrix and lead to isotropic enhancement of Jc. For instance, Xu et al.43 reported a very 
high pinning force of 1 TN/m3 at 4.2 K, 16 T (B//c) in YBCO films with Y2O3 nanoparticles. It is interesting that 
the Y2O3 nanoparticle density of 4000 ± 2000 μm-2 in our YBCO films is of the same order of magnitude as the 
BaZrO3 nano-column density in REBCO films in ref.39. With the average distance between the Y2O3 nanoparticles 
of 16 nm, we calculate matching field of approximately 8 T. The pinning force field dependence (graphs are not 
presented here) saturates at approximately 15 T at 20 K, but at 4.2 K pinning force keeps increasing beyond 20 T, 
exceeding 1 TN/m3. The values of the α exponent in the power law dependence of Jc ~ H-α are approximately 0.6 
at 20 K and 0.7 at 4.2 K, which is within the typical range for REBCO films and corresponds to the collective 
pinning large-bundle regime44.

Our observations and cited literature indicate that the influence of RE2O3 nanoparticles on the pinning 
landscape of REBCO films needs further study, including investigation of the effects of the size, concentration 
and orientation type of the nanoparticles. We have found two types of axial orientation of Y2O3 nanoparticles in 
our YBCO films: (001) and (110), and plan to study their effects on the pinning properties of YBCO and report 
them in future publications.

Another route to improving Jc(B) at low temperature is to enhance the charge carrier (hole) density in the 
superconductor. High hole doping levels lead to smaller anisotropy and higher irreversibility field20. The doping 
pattern of fully oxygenated REBa2Cu3O7-δ (δ ≈ 0) has been well studied, and low temperature anneals at high 
oxygen partial pressure are applied. Recently, Zhang et al.45 reported a systematic dependence of REBCO Jc(B) 
on the RE3+ radius, obtaining higher Jc for the smaller radii. Although the authors did not attribute the effect 
to the hole doping level, our data comparing YBCO and GdBCO wires (Fig. 1b) made on our production lines 
support this conclusion, too. The Y3+ ionic radius (0.102 nm) is smaller than that of Gd3+ (0.105 nm), resulting in 
CuO2 plane hole concentrations of 0.287 and 0.273, respectively46. This difference is also manifested in the lower 
anisotropy of YBCO, with the following values typical for our HTS wires: the YBCO c-parameter of 1.170 nm 
and a superconducting transition temperature, Tc, of 88–89 K and the GdBCO c-parameter of 1.172 nm and a Tc 
of 93 K. Thus, we saw a correlation between the Tc of YBCO films and the lift-factor to 20 K, 20 T: the lower the 
Tc–-as manifestation of overdoping with complete oxygenation of YBCO and the oxygen content in YBa2Cu3O7-δ 
approaching 7, the higher the lift-factor value (Fig. 5). The same sign of correlation between the Ic at 20 K, 20 T 
and the Tc suggests that this effect is likely not a normalisation artefact of the lift-factor methodology, which one 
might suspect due to the reduced Ic at 77 K in self-field in overdoped YBCO films with the lower Tc.

It is interesting that GdBCO and YBCO wires in Fig. 1b both contain RE2O3 nanoparticles29,36,47. The density 
of Gd2O3 nanoparticles in GdBCO, however, is much lower than that of Y2O3 nanoparticles in YBCO. We believe 
this is the manifestation of the differences in YBCO and GdBCO phase diagrams in epitaxial films48, and that 
the resulting difference in microstructure contributes to the difference in in-field properties. It is only at 77 K 
where the slightly higher Tc of GdBCO offers advantage that it exceeds YBCO wire. At lower temperatures the 
combination of Y2O3 nanoparticles and the higher hole doping level of YBCO makes YBCO wires superior.

We have developed a product that satisfies specific performance requirements from the fusion industry, which 
has created an unprecedented demand on HTS wire. When this demand turns into orders, HTS industry will 
scale the production driving down the wire cost ultimately to tens of dollars per kiloAmpere-metre, at which level 
commercial fusion plants become economically feasible18, as well as many other commercial HTS applications.

Conclusion
We have developed 2G HTS wire with a very high performance in magnetic field: engineering current density 
over 1000 A/mm2 at 20 K, 20 T and over 2000 A/mm2 at 4.2 K, 20 T. This is a result of our engineering a simple 
Y2O3 intrinsic nanoparticle vortex pinning centres in an easy to fabricate and control commercial production 
environment. The Y2O3 provides isotropic pinning amplified by point defects arising from the epitaxial strain 
induced by the presence of the nanoparticles. In addition, the high CuO2 plane hole doping level minimises the 
electronic anisotropy and strengthens the vortex pinning of YBCO. We emphasise that this newly developed 
YBCO wire is not a research laboratory scale result, but a real commercial product made daily in large quantities 
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and available on the market. The incentive for this innovative industrial development has been market pull from 
an ambitious project aimed at commercialising fusion power through the use of high field HTS magnets setting 
unprecedented performance targets for 2G HTS wire.

A simple, robust 2G HTS wire formulation with enhanced performance brings benefits not only to the pro-
spective fusion magnets, but also to all HTS applications. The cost reductions enabled by high-volume, reliable 
manufacturing of this HTS wire will allow 2G HTS to transition from a “novel” material only used in small 
quantities by specialised research labs to commercial applications such as energy production, power transmis-
sion, grid protection, and MRIs which will be seen by and benefit all of society.

Methods
2G HTS wire fabrication.  2G HTS wire was fabricated using production equipment at the SuperOx group 
of companies: at S-Innovations LLC in Moscow, Russia and at SuperOx Japan LLC in Kanagawa, Japan. The wire 
architecture is based on cold rolled Hastelloy C276 substrate, biaxially textured MgO buffer layer deposited by 
ion beam assisted deposition (IBAD), and YBa2Cu3O7 HTS layer deposited by pulsed laser deposition (PLD). 
The full architecture is given in Fig. 6 and was described in detail elsewhere35,36,49.

Wire fabrication starts with a 12 mm wide substrate; if needed, the wire is slit to narrower width after the 
deposition of the HTS and silver protective layers. Substrate tapes of 100 ± 3 µm, 60 ± 3 µm and 40 ± 3 µm thick-
ness were used in this work.

Substrate electropolishing and buffer layer deposition were performed at S-Innovations, and the HTS layer 
growth by PLD was performed at S-Innovations and SuperOx Japan, using Coherent LEAP 130C (200 Hz) and 
LEAP 300C (300 Hz) lasers. Ceramic targets with an excess of yttrium oxide with respect to the stoichiometric 
YBa2Cu3O7 composition were used, in order to ensure the formation of Y2O3 phase in the YBCO film matrix.

YBCO film thickness in different wires ranged from 1.5 to 3.5 µm, with an average among all wires of 2.4 µm 
and a standard deviation of 0.3 µm. Thicker YBCO layers were deposited in order to achieve higher absolute 
critical current and higher engineering current density. After the YBCO production conditions were established 
and the superconducting performance was ascertained, the YBCO thickness of about 2.4 µm was chosen as 
optimal for the combination of high performance and adequate production throughput.

After the YBCO layer deposition, a silver layer was deposited by magnetron sputtering at room temperature, 
with a thickness of 2 µm on the HTS side and of 1 µm on the substrate side.

Most 12 mm wide wires were mechanically slit to 4 mm width. After slitting, an additional silver layer, at 
least 1 µm thick, was deposited onto the slit edge, to protect the exposed HTS layer. For electrical stabilisation, 
surround copper layer, in most cases 5 µm per side, was deposited onto 4 mm wide wires by electroplating.

Figure 5.   The correlation between the Tc of YBCO films and their superconducting properties at 77 K, self-field 
and 20 K, 20 T. The higher oxygen content in YBa2Cu3O7-δ results in overdoping of YBCO with charge carriers 
and leads to the lower Tc and lower Ic at 77 K in self-field, but to the higher Ic and greater lift-factor values at 
20 K, 20 T.
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Production wires were routinely made in 300–600 m lengths, mostly on the 40 μm thick substrate.

Deposition of thick YBCO films on thin substrate.  To further increase JE, we deposited thick YBCO 
films on a thin (40 μm thick) substrate. Although both these approaches are straightforward and are generally 
followed for the purpose6,21,39–41,50,51, they are nontrivial to implement in economical, high yield production. 
For thick REBCO films typical is the decay of microstructure and Jc when the film thickness exceeds 1 micron. 
Certain improvements have been demonstrated by the careful temperature control of the growing film surface. 
Recently, we have reported high Jc and absolute Ic in more than 3 μm thick GdBCO films by improved tempera-
ture profile in the HTS film deposition zone37. Here we successfully used the same approach to grow thick YBCO 
films.

The buffer layer and HTS film quality and superconducting performance were the same on substrates of all 
thicknesses we used: 100, 60 and 40 microns. However, the production yield was initially lower on the 40 μm thick 
substrate due to mechanical damage of the tape during winding procedures at all process steps. We resolved this 
mechanical issue by improving tape tension control in all winding systems. In particular, tension relieve points 
were added in multipass winding systems.

Routine characterisation of 2G HTS wire.  Positional non-contact measurements of critical current at 
77 K in self-field were performed along the entire length of each wire with a TapeStar XL machine, with a lon-
gitudinal resolution of 2 mm. As-measured non-contact Ic data for each wire were calibrated by the standard 
4-contact transport DC measurements, using a 1 µV/cm criterion for Ic. Typical calibrated TapeStar XL data for 
a production wire are shown in Fig. 7.

The critical current, Ic, at 77 K in self-field was 175 A, averaged over the entire wire lot. The best 10% of wires 
had an Ic of over 200 A. With a typical YBCO layer thickness of 2.35 microns, the average critical current density, 
Jc, was 1.86 MA/cm2.

Figure 6.   Layer-by-layer structure of 2G HTS wire described in this article.

Figure 7.   Typical data on critical current at 77 K in self-field along the length of a 542 m long, 12 mm wide 
YBCO-based 2G HTS wire, serial number 1034 (126–668). Average critical current is 618 ± 18 A.
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X-ray diffraction analysis was performed with a Rigaku SmartLab diffractometer (CuKα1) by measuring 
θ-2θ-, φ-, and ω-scans. The mean particle size of the Y2O3 crystallites was calculated using the Scherrer equation.

Surface morphology was analysed with a Carl Zeiss EVO50 scanning electron microscope equipped with an 
IXRF energy dispersive element analysis system.

YBCO film thickness was determined gravimetrically by weighing three 30 cm long pieces of 12 mm wide 
wire before and after dissolving the HTS layer in 5% nitric acid52.

Delamination energy was routinely tested on samples taken from ends of each 12 mm wide wire in silver 
finish by the climbing drum method53 using a Tinius Olsen material testing machine 5 ST series and a custom 
climbing drum rig. Average delamination energy is 7.4 ± 2.5 J/m2. Delamination takes place at the buffer layer/
HTS layer interface and/or within the buffer layer stack. The reported values of delamination energy and its 
rather wide variation, as well as failure interfaces are typical for 2G HTS wire industry53. We plan to report the 
delamination measurements and results in detail in a separate publication.

Transmission electron microscopy.  Transmission electron microscopy (TEM) images were taken in an 
Osiris TEM/STEM (Thermo Fisher Scientific) equipped with a high angle annular dark field (HAADF) electron 
detector (Fischione) and Bruker energy-dispersive X-ray microanalysis (ERA) system (Bruker) at an acceler-
ating voltage of 200 kV. Image processing was performed using Digital Micrograph (Gatan) and TIA (Ther-
moFisher Scientific) software. Samples for TEM were prepared using the focused ion beam (FIB) technique in a 
Versa (ThermoFisher Scientific) dual beam microscope.

Measurement of critical current in magnetic field.  A number of independent measurement tech-
niques and apparatus were used for the measurement of critical current in magnetic field.

A PPMS-9 system at P.N. Lebedev Physics Institute was used for the measurement of magnetisation hyster-
esis loops in the 4.2–77 K temperature range and 0–8 T (B//c) magnetic field range. Sample size was 3 × 3 mm. 
Lift-factors were calculated as ratios of magnetisation at corresponding temperature and magnetic field to that 
at 77 K, 0 T.

A SuperCurrent system54 at Robinson Research Institute was used for transport current measurements of Ic 
in the 82.5–20 K temperature range and 0–8 T field range (B//c and angular dependences) on full 4 mm width 
samples.

A SuperCurrent system at Commonwealth Fusion Systems was used for transport current measurements 
of Ic in the 77–20 K temperature range and 0–12 T field range (B//c and angular dependences) on full 4 mm 
width samples. The dependence of critical current on magnetic field at 20 K was extrapolated to 20 T using the 
fit equation published in55.

The Ic(B, T, Ɵ) data collection in High Field Laboratory for Superconducting Materials at Tohoku University 
was carried out using 30 µm and 40 µm bridges of 1 mm length fabricated by picosecond laser micromachining 
from the 4 mm tapes with the top Ag layer. The measurements were performed at 77, 65, 40, 20 and 4.2 K using 
20 T-CSM56 and 25 T-CSM57 cryogen-free superconducting magnets. The angular dependence Ic(Ɵ) data were 
collected in the range from − 45° to 120°.

High-field measurements at NHMFL were performed on full 4 mm width samples in two magnets. For 
in-field experiments up to 15 T, we used the Oxford Instruments 15 T/17 T magnet system with a 52 mm cold 
bore. Samples were immersed in liquid helium during experiments at 4.2 K. Samples were in helium gas during 
experiments at 20 K26 In experiments up to 31.2 T we used the NHMFL resistive magnet system (cell 7) with a 
50 mm bore magnet; 38 mm in Janis cryostat. More experimental detail can be found in38.

The experimental setup at the University of Geneva allows measuring Ic up to 2 kA at 4.2 K in liquid He and 
up to 1 kA in He gas flow by standard four-probe measurement. A 19 T (at 4.2 K) / 21 T (at 2.2 K) supercon-
ducting solenoid magnet from Bruker BioSpin completes the system. A temperature precision down to ± 0.01 K 
is achieved in He gas flow up to 50 K using an active temperature stabilisation system which compensates the 
heating during current runs with PID controlled heaters58.

Lift‑factor methodology.  We used the so-called “lift-factor” methodology in our result analysis. This 
methodology is accepted among 2G HTS wire manufacturers27,28,36; however, it has certain applicability con-
straints and thus is often criticised26,27. Lift-factor is a simple empirical Ic scaling parameter: it is defined as the 
ratio of a sample’s Ic at a specific temperature and magnetic field to the Ic of the same sample at 77 K in self-field. If 
lift-factors reproduce reasonably well among many different samples of the same type (same HTS layer chemical 
composition, growth conditions, etc.), a database of previously measured lift-factors (see Table 1 in Supplemen-
tary Information and ref.59) becomes a useful predictive tool for the estimation of the wire performance in spe-
cific operation conditions: one just needs to measure the wire’s critical current at 77 K in self-field and multiply 
it by the corresponding lift-factor.
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